
4. Adversarial Tracking

In this chapter, we present adversarial attacks against object tracking systems.

Unlike object detection systems that only make predictions based on the current

input image from the camera, object tracking models combine prior predictions with

current inputs to generate trajectories of moving objects, making them more robust

to adversarial attacks.

4.1 Introduction

As introduced in Chapter 2, deep learning models are widely used in autonomous

driving for perception tasks, such as object-tracking, to generate trajectories of

surrounding vehicles. In the context of autonomous driving, we lack access to

gradients, which makes white-box attacks nearly impossible. Additionally, the

difficulty in obtaining intermediate query results within the internal data path makes

it impractical for black-box attacks to query the model.

However, this does not necessarily mean that current autonomous driving systems

are robust against adversarial attacks. Many object tracking systems still rely on pre-

trained object detection models (as outlined in Table 4.1), making them susceptible

to transferable perturbations generated using well-known object detection models.

Consequently, adversarial attacks targeting object detection could also impact object

tracking systems.

Rank Model Popularity
1 SSD 605
2 YOLO-v3 251
3 Faster R-CNN 236
4 R-CNN 178
5 YOLO-v2 164
6 RetinaNet 75
7 Yolo-v1 52

Table 4.1: Most popular object detection models on GitHub (Wang et al., 2021a)
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4.1.1 Object Tracking

The first tracking system used radar and sonar to track objects for military applica-

tions, and the algorithm consists of four parts: data association, state update, state

prediction, and track management. Later, the employment of deep learning yields

significant performance increases for visual tracking tasks.

Before the widespread adoption of deep learning, visual tracking problems were

commonly addressed using low-level features and statistical learning techniques.

These included methods such as the Joint Probabilistic Data Association Filter

(JPDAF), Multi-Hypothesis Tracking (MHT), and Random Finite Sets (RFS). These

techniques were often combined with nonlinear filters such as Bayesian Estimation,

the Kalman Filter, the Particle Filter, and the Gaussian Sum Filter to establish

correspondences between detections and tracklets (Vo et al., 2015).

As research in deep learning advances, traditional low-level features and statistical

learning techniques for object tracking are being replaced by deep neural networks.

Deep neural networks are widely utilized for both Single-Object Tracking (SOT) and

Multi-Object Tracking (MOT) applications (Krebs, Duraisamy and Flohr, 2017).

Single-Object Tracking (SOT) focuses on tracking one specified target within

a sequence of input image frames. The target can be specified using a template

image or be chosen from the first frame (Soleimanitaleb and Keyvanrad, 2022) (see

Fig. 4.1a). Similar to face recognition, the image of a target person may not appear

in the training set, so the SOT model must be capable of tracking any given object

with only one image. Besides, the class label may not be available in the training

set, requiring the model to handle a variety of potential targets.

SOT commonly uses a Siamese network to learn a similarity function that

differentiates objects and then utilizes statistical methods to update and maintain a

single tracklet effectively (He et al., 2018; Guo et al., 2017b; Bertinetto et al., 2016;

Dong and Shen, 2018; Zhang and Peng, 2019).

Multi-Object Tracking (MOT), in contrast, involves tracking multiple ob-

jects simultaneously and maintaining multiple tracklets. In MOT, the number of

classes is typically predefined, and the tracking model assigns a unique ID to each

detected object. The primary challenge in MOT is differentiating distinct objects

and associating the same object across consecutive frames to maintain consistent

tracklets (see Fig. 4.1b).

Recent research interests are shifting from SOT to MOT, especially in the context

of autonomous driving, which demands a comprehensive perception of surrounding

vehicles. Table 4.2 highlights the top-performing methods on the KITTI multi-object

tracking leaderboard for autonomous driving (Geiger, Lenz and Urtasun, 2012).
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(a) SOT (b) MOT

Figure 4.1: The difference between Single-Object Tracking (SOT) (Jansari, Parmar and
Saha, 2013) and Multi-Object Tracking (MOT) (Liu et al., 2022b).

Method Sensor Type Real-Time HOTA
BiTrack (Not publications yet) Lidar - N 82.69%
LEGO (Zhang et al., 2023b) Lidar - Y 80.75%
CollabMOT (Ninh and Kim, 2024) Stereo TBD N 80.02%
RAM (Tokmakov et al., 2022) Mono JDT Y 79.53%
PermaTrack (Tokmakov et al., 2021) Mono JDT Y 78.03%
OC-SORT (Cao et al., 2023) Mono TBD Y 76.54%

Table 4.2: Top Multi-Object Tracking (MOT) methods on the KITTI leaderboard.

Object Tracking Sensors

Camera and Lidar are the two most popular sensors used in autonomous vehicles.

On the KITTI leaderboard, the method that utilizes point clouds from a Velodyne

laser scanner achieves the highest Higher Order Tracking Accuracy (HOTA) (Luiten

et al., 2020). We introduce the HOTA evaluation metric in Sec. 4.3.

Monocular Tracker: Vision-only methods rely solely on input images from

a single camera (Wu et al., 2021) (Hu et al., 2022) are accurate for 2D multi-

object tracking. However, they cannot reliably predict 3D locations because depth

information is absent from single-camera input.

Binocular Tracker: This approach combines 2D object detection results with

depth information obtained from stereo vision to achieve 3D object detection and

tracking. However, using a stereo camera setup requires extensive calibration and

complex matching algorithms (Ninh and Kim, 2024).

Multi-Modality Tracker: Accurately estimating vehicles’ pose in 3D space is

crucial for autonomous driving. By combining 2D detection results with 3D Lidar

data, this approach achieves the highest tracking accuracy on the KITTI leaderboard,

though at the cost of using more expensive 3D laser scanners than CMOS cameras.
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Object Tracking Frameworks

Tracking-By-Detection (TBD) and Joint Detection and Tracking (JDT) are the two

most popular frameworks for object tracking applications.

Tracking-By-Detection (TBD) is a modular object tracking framework that

consists of object localization, feature extraction, data association, and track man-

agement (see Fig. 4.2a). Object detection models handle object localization and

feature extraction to generate bounding boxes, while traditional methods such as the

Hungarian Algorithm manage data association, and the Kalman Filter oversees track

management. The overall accuracy of the TBD framework depends significantly on

the precision of the detector, such as SiamRPN++ (Li et al., 2019) for SOT and

YOLO, Faster R-CNN, and SSD for MOT applications (Sun et al., 2020).

Joint Detection and Tracking (JDT): As more accurate and efficient deep

neural networks, such as Vision Transformer (Dosovitskiy et al., 2020), are being

developed, there is also a growing trend of employing end-to-end tracking models

(Pal et al., 2021; Guo et al., 2022). PermaTrack is a JDT method that takes multiple

frames of images as input and outputs the position and velocity of each vehicle (see

Fig. 4.2b). As can be seen from Tab. 4.2, JDT methods achieve slightly higher

accuracy than TBD methods.

To explore whether traditional statistical methods, such as the Kalman Filter, can

help mitigate the impact of adversarial attacks, we focus on modular TBD methods

(highlighted in Tab 4.2) instead of end-to-end JDT models. Additionally, due to the

lower cost and ease of setup of monocular cameras compared to 3D Lidar and stereo

cameras, our primary focus is on vision-only monocular 2D object detection.

(a) Tracking-By-Detection (Modular System)

(b) Joint Detection and Tracking (End-to-End Model)

Figure 4.2: The difference between Tracking-By-Detection (TBD) and Joint Detection and
Tracking (JDT).
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4.1.2 Adversarial Attacks

Adversarial attacks have progressed from image classification to object detection

and then object tracking models. Notably, Joint Detection and Tracking (JDT)

methods that utilize end-to-end deep learning models, such as GOTURN (Wiyatno

and Xu, 2019) and FairMOT (Lin et al., 2021b), are vulnerable to adversarial attack.

For Tracking-By-Detection (TBD) methods, adversaries focus on vulnerabilities in

various components within the tracking system, including the object detector, the

association method, and the tracklet management module.

Attacking Object Detectors: The accuracy of TBD methods heavily relies

on the object detector’s ability to produce precise bounding boxes of target objects.

If the object detector produces bounding boxes at incorrect positions or does not

predict bounding boxes at all, the subsequent modules will struggle to generate

precise tracklets.

Table 4.3 presents studies focusing on attacking object detectors, and most work

attacks SiameseRPN-based trackers (Wu et al., 2019). Siamese neural networks

employ triplet loss or contrastive loss to train a similarity function to discern objects,

such as distinguishing facial features in face recognition systems.

In 2019, the first adversarial attack against MOT models attacked a TBD method

that used YOLOv3 as the object detector (Jia et al., 2020). Moreover, YOLOX (Ge

et al., 2021) and CenterNet (Duan et al., 2019) stand out as two widely-used object

detectors for autonomous driving applications, yet they both exhibit vulnerability to

adversarial attacks (Zhou et al., 2023; Pang et al., 2024).

Attacking Association Methods: Another crucial factor for MOT system is to

assign a unique ID to each detected object. It is possible to perturb the association

module so that the same object may be given different IDs in different frames, thus

breaking the continuity of tracklets. Liu et al. introduced the Blind Attack, which

assigns the background label to the target object, and the Blur Attack, which assigns

other labels to the target object (Liu et al., 2022c).

Attacking Tracklets: Tracklets, commonly managed by the Kalman Filter,

store the position and velocity of each vehicle. By perturbing objects’ speed and

direction, incorrect states are predicted for each object, enabling the switching of

tracklets between adjacent objects. For instance, Lin et al. perturbed the appearance

and distance similarity of two adjacent pedestrians, causing FairMOT and ByteTrack

models to fail to track the targets in the subsequent frames (Lin et al., 2021a).

While it is acknowledged that MOT systems utilizing 3D Lidar Point Clouds are

also susceptible to adversarial attacks (Cheng et al., 2021; Cheng et al., 2022; Wang

et al., 2022d), our research focuses on attacks targeting vision-only MOT systems.
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4.2 Methodology

4.2.1 Problem Formulation

For autonomous driving applications, there is no access to future frames, making it

an online tracking problem, which means the model can only use past and present

information to make hypothesis for the present. As introduced in Sec. 1.4, we aim

to answer the question: Can traditional methods mitigate the impact of adversarial

attacks? To explore this, we choose the TBD framework as our target model, which

consists of object detection, state estimation, and data association, incorporating

both deep neural networks and traditional algorithms (see Fig. 4.3).

Object Detection: We use similar notations as in Chapter 3 to formulate the

detection problem. To differentiate the model’s hypotheses from ground truths, we

use {h1, h2, h3, ..., hm} to represent hypotheses and {o1, o2, o3, ..., on} as the ground

truths. Given an input image x at time t, the object detection model outputs

a hypothesis of N candidate bounding boxes {ht
1, h

t
2, h

t
3, ..., h

t
N}. Each hypothesis

ht
i = (bi, ci, pi) includes a bounding box bi = (bxi , b

y
i , b

w
i , b

h
i ), the confidence value

ci ∈ [0, 1] and the softmax probability vector, pi = (p1i , p
2
i , ..., Ki) for K classes.

State Estimation: To assign a consistent ID to the same object across frames, the

Kalman Filter is commonly used to track the state of each object. The state of each

object, modeled using a linear constant velocity model, is stored as a vector:

x = [u, v, s, r, u̇, v̇, ṡ]T (4.1)

where (u, v) are the coordinates in the image, s represents the scale, r is the aspect

ratio of the object, and [u̇, v̇, ṡ] are the corresponding velocities. The state vector is

updated if a predicted bounding box is associated with the object.

Figure 4.3: Common modules in online tracking methods that adopt the TBD framework.
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Feature Extractor (Optional): The state of each object may not be sufficient

to differentiate objects when occlusion occurs. Some detection frameworks use

another deep neural network, such as a Siamese Network (Li et al., 2019), to learn a

similarity function that produces a feature vector for each object and can be used

to differentiate objects. However, using another deep neural network requires more

computational power to achieve real-time performance, and thus, it is not utilized in

all online tracking models.

Data Association: Besides object detection, the tracking model assigns unique IDs

to each object. The association module combines the state vector and feature vector

to measure the similarity between the predicted objects and ground truths. For

instance, the Mahalanobis distance is often used to measure the similarity between

state vectors. Then, similar objects can be associated with the same IDs by solving

a linear assignment problem using the Hungarian Algorithm.

4.2.2 Adversarial Tracking

Although object detection models are vulnerable to adversarial attacks, the impact

of such attacks can be mitigated if false positive bounding boxes generated by

adversarial perturbations are inconsistent with the linear velocity model maintained

by the Kalman Filter or cannot be associated with previous frames. In other words,

the state estimation and data association methods that use traditional algorithms

can filter out inconsistent bounding boxes crafted by adversarial attacks.

The accuracy of a tracking method can be easily improved with a better detection

model, even if the Kalman Filter (KF) and Hungarian Algorithm remain unchanged

(see Tab. 4.4). For instance, Strong-SORT outperforms Deep-SORT partly because it

adopts a more accurate detector and feature extractor that were not available when

Deep-SORT was proposed. Therefore, it is crucial to use the same detection model

and feature extractor across all methods for a fair comparison of state estimation

and data association methods. Consequently, we use a less accurate detection model,

YOLOv3, along with the same attack methods described in Chapter 3, to test the

robustness of state estimation and assignment modules.

Method Detector State Estimation
SORT (Bewley et al., 2016) FRCNN KF
Deep-SORT (Wojke, Bewley and Paulus, 2017) FRCNN KF
Strong-SORT (Du et al., 2023) YOLOX NSA KF
OC-SORT (Cao et al., 2023) YOLOX KF & Re-Update

Table 4.4: A comparison of different real-time online trackers.
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4.3 Evaluation metrics

Object tracking models should distinguish between different objects and consistently

assign the same ID to the same object across frames. However, the IDs assigned by

the tracking model do not need to match the ground truth IDs exactly. For example,

a person labeled as ”person 6” in the ground truth might be assigned ”person 1”

by the tracking model (see Fog. 4.4). As long as the ID remains consistent across

frames, the specific numbers do not need to match.

Consequently, to evaluate an object tracking model, we first need to find a

one-to-one match that maps the IDs assigned by the tracking model to the IDs

in the ground truths. The matching should minimize the total distance between

the detected objects and their corresponding ground truth objects in all frame

(Ciaparrone et al., 2020). Finding the match can be formulated as a minimum weight

assignment problem, which can be solved using the Hungarian algorithm.

(a) Hypotheses (b) Ground Truths

Figure 4.4: The same person may be assigned a different ID by the tracking model compared
to the ground truth.

After finding the match, the tracking results can be evaluated using the following

widely adopted evaluation metrics MT, ML (Wu and Nevatia, 2006), MOTA (Bern-

ardin and Stiefelhagen, 2008), IDF1 (Ristani et al., 2016), and HOTA (Luiten et al.,

2021).

4.3.1 Classical Metrics (MT, ML)

Mostly Tracked (MT) and Mostly Lost (ML) are the two most popular evaluation

metrics proposed in (Wu and Nevatia, 2006) and are widely reported in MOTChal-

lenge (Dendorfer et al., 2020), KITTI (Geiger, Lenz and Urtasun, 2012) and nuScenes

(Caesar et al., 2020) dataset.
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For the video frame at time t, the object tracking model assigns a unique ID j to

a detected object and produces a hypothesis ht
j. After solving the linear assignment

problem using the Hungarian Algorithm, if the hypothesis ht
j is mapped to oti (see

4.5), the ground truth object is considered tracked at time step t.

Ground truth objects with the same ID at different time steps are combined

into a tracklet. A tracklet is classified as mostly tracked if correctly tracked in at

least 80% of the frames. Conversely, a tracklet is classified as mostly lost if correctly

tracked in at most 20% of the frames. The evaluation metric MT counts the number

of mostly tracked tracklets, while ML counts the number of mostly lost tracklets

(Wu and Nevatia, 2006).

Figure 4.5: Examples of mostly tracked and mostly lost tracklets.

4.3.2 CLEAR MOT Metrics (MOTA)

Although MT and ML count the total number of good (mostly tracked) tracklets and

bad (mostly lost) tracklets, they do not provide information about the bottleneck of

the tracker or how to improve it. These metrics do not indicate whether improvements

should be focused on the detector or the association algorithm.

To address this issue, the CLEAR MOT Metrics use the number of False Positives

and False Negatives to measure the accuracy of the detector, and ID Switches to

measure the quality of the association algorithm. An overall metric, MOTA, is then

calculated to provide a comprehensive evaluation.

MOTA = 1−
∑

t FNt +
∑

t FPt +
∑

t IDSWt∑
tGTt

∈ (−∞, 1] (4.2)
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As illustrated in Fig. 4.6a, the tracking result is accurate if a ground truth is

matched with a hypothesis. A false negative (FN) is counted when a ground truth

bounding box cannot be associated with a hypothesis (the left side), and a false

positive (FP) is counted when a hypothesis cannot be associated with a ground

truth bounding box (the right side). Besides, the ID switch happens when the same

ground truth object is assigned different IDs in consecutive frames (see Fig. 4.6b).

(a) False Negative and False Positive.

(b) ID Switch (Different colors represent different IDs assigned by the tracking model).

Figure 4.6: The False Negatives (FN), False Positives (FP) and ID Switches (IDSW) for
Multiple Object Tracking Accuracy (MOTA).

4.3.3 ID Scores (IDF1)

The MOTA metric provides insight into detector performance by considering false

negatives (FN) and false positives (FP) and uses ID switches (IDSW) to evaluate

the association algorithm. However, it is biased towards detection performance. For

instance, both Tracklet 1 (4.7b) and Tracklet 2 (4.7c) achieve a MOTA of 70%, as

all ground truth objects in Fig. 4.7a are matched with hypotheses, indicating an

effective detector. Despite this, Tracklet 2 is preferable in some scenarios because it

maintains consistent IDs for the same object over a longer period than Tracklet 1.



80 CHAPTER 4. ADVERSARIAL TRACKING

Another evaluation metric is needed to measure how long the tracker correctly

identifies targets. The IDF1 score addresses this issue by first matching each ground-

truth object to a specific tracklet with a consistent ID. A hypothesis is considered a

match only when both the position and IDs align. Consequently, Tracklet 2, which

maintains consistent IDs for the same object over a longer period, results in fewer

FPs and FNs than Tracklet 1, indicating it is a better tracker.

(a) The ground truth tracklet.

(b) Tracklet 1: MOTA = 70% (FN=0, FP=0, IDSW=3), IDF1 = 30% (IDTP = 3, IDFP = 7,
IDFN = 7)

(c) Tracklet 2: MOTA = 70% ((FN=0, FP=0, IDSW=3), IDF1 = 80% (IDTP = 8, IDFP = 2,
IDFN = 2)

Figure 4.7: A comparison of MOTA and IDF1. Different colors indicate different IDs
assigned by the tracking model.

Formally, the ID score uses a Bipartite graph G = (VT , VC , E) to connect nodes

in ground truths and hypothesis at time t. VT includes regular nodes τ (ground

truths) and false positives f+
γ , while VC includes regular nodes γ (hypotheses) and

false negatives f−
τ (see Fig. 4.8). An edge represents a true positive ID (IDTP) if

both connected nodes are regular nodes, a false positive ID (IDFP) if the connection

is (f+
γ ) and a false negative ID (IDFN) if the connection is (τ, f−

τ ).
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Figure 4.8: The IDF1 score defines IDFP and IDFN using a Bipartite Graph.

Lastly, the IDF1 score can be computed from Identification Precision (IDP) and

Identification Recall (IDR) using the following equations:

IDP =
IDTP

IDTP + IDFP
IDR =

IDTP

IDTP + IDFN
(4.3)

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(4.4)

4.3.4 Higher Order Tracking Accuracy (HOTA)

The MOTA is biased towards detection, while IDF1 is biased towards association.

The HOTA metric tries to find a balance between the detection accuracy (DetA)

and association accuracy (AssA) using the following equation:

HOTAα =
√

DetAα · AssAα =

√ ∑
c∈TPα

Ass-IoU(c)

|TPα|+ |FNα|+ |FPα|
(4.5)

First, the HOTA metric runs the Hungarian algorithm to determine a one-

to-one matching between hypotheses and ground truths with IoU > α. Then,

detection accuracy (DetA) is calculated for hypotheses that match the ground truth

detections without considering IDs. Association accuracy (AssA), on the other hand,

is calculated for hypotheses that match both detection and IDs (Luiten et al., 2021).
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DetAα =
|TPα|

|TPα|+ |FNα|+ |FPα|
(4.6)

AssAα =
1

|TPα|
∑

c∈TPα

Ass-IoU(c) (4.7)

Ass-IoU(c) = |TP
∑
c∈TP

|TPA|
|TPA|+ |FNA|+ |FPA|

(4.8)

For example, Tracklet 1 in Fig. 4.9b only detects the first 5 objects out of 10,

while Tracklet 2 in Fig. 4.9c detects all 10 objects but with less consistency in

ID assignment. As a result, MOTA prefers Tracklet 2 due to its better detection

accuracy, while IDF1 favors Tracklet 1 for its superior association accuracy. On the

other hand, HOTA assigns a score of 50% to both tracklets, attempting to balance

detection and association performance.

(a) The ground truth tracklet.

(b) Tracklet 1: DetA = 50%, MOTA = 50%, HOTA = 50%, IDF1 = 67%, AssA = 50%.

(c) Tracklet 2: DetA = 100%, MOTA = 97%, HOTA = 50%, IDF1 = 25%, AssA = 25%.

Figure 4.9: A comparison of MOTA, IDF1, and HOTA. Different colors indicate different
IDs assigned by the tracking model.
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4.4 Experimental Results

In this section, we apply the white-box PCB attack introduced in Chapter 3 to the

SORT tracking framework (Bewley et al., 2016), a widely used TBD framework

recognized for its real-time performance. We also attack several subsequent tracking

methods built upon SORT, including Deep SORT (Wojke, Bewley and Paulus, 2017),

Strong SORT (Du et al., 2023), and OC SORT (Cao et al., 2023).

To investigate whether traditional algorithms, such as the Kalman Filter and the

Hungarian Algorithm, can alleviate the effects of adversarial attacks, we first set up

a baseline by evaluating SORT, Deep SORT, Strong SORT, and OC SORT combined

with different detectors (YOLOv3, YOLOv4, YOLOX) on the KITTI and CARLA

datasets without applying adversarial attacks (see Fig. 4.10). The experimental

results are presented in Table 4.5 and Table 4.6 1, and we have the following findings:

1. Even with a perfect detector (using ground truth as detections), the tracking

methods could not achieve 100% HOTA because the same object may be

assigned different IDs when occlusion occurs.

2. However, if the accuracy of the detector decreases, the the tracking performance

significantly deteriorates. Since YOLOX and YOLOv4 achieve comparable

performance, we focus on YOLOv4 and YOLOv3 in our further experiments.

3. The tracking module can be improved without using neural networks. Although

both OC SORT and Strong SORT improve the tracking accuracy, OC SORT

does not use an additional neural network for ID association, demonstrating

that substantial improvements can be achieved with traditional algorithms.

(a) KITTI Autonomous Vehicle (b) CARLA Simulator

Figure 4.10: Sample images from the KITTI and CARLA dataset.

1 Our source code and dataset are available on GitHub: https://github.com/wuhanstudio/
adversarial-tracking

https://github.com/wuhanstudio/adversarial-tracking
https://github.com/wuhanstudio/adversarial-tracking
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Detector Tracker HOTA ↑ MOTA ↑ IDF1 ↑ MT ↑ ML ↓
Ground Truth OC SORT 93.84 93.70 96.41 473 11
Ground Truth Strong SORT 93.72 93.05 96.38 506 14
Ground Truth Deep SORT 85.43 90.43 94.83 480 14
Ground Truth SORT 84.95 92.80 95.12 467 11

YOLOX OC SORT 53.78 52.24 68.29 143 113
YOLOX Strong SORT 54.30 54.31 66.93 187 89
YOLOX Deep SORT 52.82 50.83 68.11 173 106
YOLOX SORT 51.32 54.14 66.96 163 105
YOLOv4 OC SORT 53.38 56.76 68.97 160 81
YOLOv4 Strong SORT 55.17 60.03 69.32 220 65
YOLOv4 Deep SORT 51.99 64.95 67.45 190 81
YOLOv4 SORT 50.63 59.25 66.33 188 72
YOLOv3 OC SORT 40.60 43.98 55.94 89 130
YOLOv3 Strong SORT 43.25 47.64 57.47 122 96
YOLOv3 Deep SORT 41.69 45.55 57.65 112 111
YOLOv3 SORT 39.27 46.83 53.72 108 113

Table 4.5: A comparison of different real-time online trackers (KITTI dataset).

Detector Tracker HOTA ↑ MOTA ↑ IDF1 ↑ MT ↑ ML ↓
Ground Truth OC SORT 92.93 95.03 93.55 173 9
Ground Truth Strong SORT 91.17 94.20 91.79 181 9
Ground Truth Deep SORT 82.41 91.21 90.16 165 10
Ground Truth SORT 82.11 93.89 88.98 171 9

YOLOX OC SORT 60.40 64.89 77.10 103 30
YOLOX Strong SORT 59.60 63.08 73.64 121 26
YOLOX Deep SORT 56.97 59.59 73.61 101 28
YOLOX SORT 57.01 64.91 72.96 118 27
YOLOv4 OC SORT 57.99 63.25 75.78 82 36
YOLOv4 Strong SORT 59.49 65.36 74.81 107 28
YOLOv4 Deep SORT 56.65 60.43 74.07 89 31
YOLOv4 SORT 56.31 65.27 73.37 103 28
YOLOv3 OC SORT 55.90 61.10 74.31 86 34
YOLOv3 Strong SORT 56.19 61.43 71.43 109 27
YOLOv3 Deep SORT 53.80 57.24 70.92 91 27
YOLOv3 SORT 53.45 62.63 69.30 107 28

Table 4.6: A comparison of different real-time online trackers (CARLA dataset).
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4.4.1 Image-Specific PCB Attack

The image-specific attack was tested with hyperparameters of attack strength ϵ = 8

and learning rate decay k = 0.99. We updated the perturbation frame-by-frame,

iterating one step per frame for 300 consecutive frames on each of the 7 maps.

After applying adversarial perturbations, the tracking accuracy drops significantly

for both YOLOv4 and YOLOv3 (see Table 4.7). Notably, the MOTAs are negative

due to a large number of false positives. As shown in Fig. 4.11, the attack against

tracking methods using YOLOv3 as detectors generates a large number of dense,

small bounding boxes detected as cars, while YOLOv4 produces fewer false positives

because the bounding boxes are larger. As a result, YOLOv4 is more robust than

YOLOv3 against the image-specific attack.

The effectiveness of the image-specific attack can be further enhanced by increasing

the number of iterations per frame, because in the first few frames, the occurrence of

false positives is minimal and the tracking method remains largely unperturbed.

In conclusion, perturbing the object detection model alone proves to be sufficient

for attacking tracking models.

Detector Tracker HOTA ↑ MOTA ↑ IDF1 ↑ MT ↑ ML ↓
YOLOv4 OC SORT 25.34 17.07 34.46 21 120
YOLOv4 Strong SORT 26.86 0.94 33.20 24 105
YOLOv4 Deep SORT 25.06 -6.30 32.95 23 104
YOLOv4 SORT 26.32 19.19 34.78 27 115
YOLOv3 OC SORT 17.03 -482.66 14.09 56 52
YOLOv3 Strong SORT 14.85 -772.60 9.95 65 42
YOLOv3 Deep SORT 15.32 -692.26 11.29 59 44
YOLOv3 SORT 15.80 -525.81 12.00 66 46

Table 4.7: Evaluation results of the Image-Specific PCB attack (CARLA dataset).

(a) YOLOv3 (b) YOLOv4

Figure 4.11: The image-specific attack against object tracking methods.
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4.4.2 Image-Agnostic PCB Attack

The image-agnostic attack generates an Universal Adversarial Perturbation (UAP)

to attack all video frames. We trained the UAP on Map 02 for 100 iterations, as

Map 02 generalizes best across all maps according to Fig. 3.18 in Chapter 3. The

training was conducted with a learning rate of α = 0.001, a learning rate decay of

k = 0.98, and an attack strength of ϵ = 8.

For YOLOv4, the image-agnostic attack is slightly more effective than the image-

specific attack because the UAP iterates for more steps than the image-specific attack

(see Tab. 4.8). A significant difference in outcomes between image-specific and

image-agnostic attacks is that false positives generated by UAPs are predominantly

recognized as chairs and persons rather than cars (see Fig. 4.12b). However,

autonomous driving systems primarily track cars, and thus most small, dense false

positives bounding boxes (recognized as chairs, persons) are eliminated, rendering

attacks against YOLOv3 less effective than YOLOv4. In other words, the effectiveness

of UAPs can be improved by incorporating targeted attacks.

Detector Tracker HOTA ↑ MOTA ↑ IDF1 ↑ MT ↑ ML ↓
YOLOv4 OC SORT 22.05 14.26 33.07 10 136
YOLOv4 Strong SORT 24.11 16.95 34.37 9 122
YOLOv4 Deep SORT 24.87 10.98 33.54 7 131
YOLOv4 SORT 21.96 14.70 30.20 10 129
YOLOv3 OC SORT 43.45 45.45 62.43 39 61
YOLOv3 Strong SORT 43.01 47.18 57.42 61 49
YOLOv3 Deep SORT 43.34 43.28 60.17 49 52
YOLOv3 SORT 40.58 46.85 55.20 55 51

Table 4.8: Evaluation results of the Image-Agnostic PCB attack (CARLA dataset).

(a) Original image (b) YOLOv3

Figure 4.12: The image-agnostic attack against object tracking methods.
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4.5 Summary

This chapter introduced the two most popular tracking frameworks, Tracking-By-

Detection (TBD) and Joint Detection and Tracking (JDT), and evaluation metrics

such as HOTA, MOTA, IDF1, MT, and ML. We evaluated four real-time online

tracking methods—SORT, Deep SORT, Strong SORT, and OC SORT—on the KITTI

and CARLA datasets. With the same detector, OC SORT achieved comparable

tracking accuracy to Strong SORT but without additional neural networks for feature

extraction, suggesting that tuning traditional methods (e.g., the Kalman Filter) could

improve tracking accuracy without adding complexities to deep learning models that

increase vulnerability to adversarial attacks. For TBD methods, tracking accuracy

heavily relies on the precision of the detector. Our experimental results revealed that

both image-specific and image-agnostic PCB attacks significantly decreased tracking

accuracy, indicating that attacking the detector itself is sufficient to compromise the

tracking methods.
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